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Quantum optimization for LHC physics

• Employ quantum computing to estimate systematics due to Color 
Recombination models
– Solving an optimization problem of phenomenological interest
– Formulate the energy minimization as a binary constraint satisfaction problem
– Solve for realistic partonic configurations aiming to find a global minimum

• Minimize the color energy subject to constraints. 
– Compare quantum computing results with best-known classical solutions
– Evaluating the impact on measurements such as top quark mass.

Time to solve versus number of 
variables for a given set of events

Energy measurement versus λ for 
the given set of events

Classical Tabu solver compared with 
D-Wave sampling through QBSolv

Quantum annealers for classification 

Use Restricted Boltzmann Machines for classification 
of galaxy morphology. To put data on the D-Wave, we 
need to compress images to a small number of bits. 
For this, we use Principal Component Analysis.

...

Hidden units

Visible units: compressed data

Weights

The last visible 
unit encodes the 
class of the 
object

Below, we show the accuracy achieved by RBMs 
of different size (same number of visible and 
hidden units, indicated below the graph). 
Quantum-trained RBMs are competitive at early 
stages, but dominated by classical RBMs later.

The hard task in training 
an RBM is sampling 
from a Boltzmann 
distribution. We can test 
how far samples are by 
using them to seed 
Gibbs sampling and 
sampling until 
Kolmogorov-Smirnov 
test gives p > 0.05.

We see using the D-Wave with temperature estimation provides 
an advantage in early training stages, but that is reduced as 
couplings increase in later stages.

Quantum gate models for classification
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Above, we see RBM beat 
other classifiers on small 
training sets (250 
examples), and the 
quantum RBM is the most 
accurate at early training 
stages. This test was done 
with 48x48 RBM.

We use Google's Sycamore (below, right) to implement a quantum 
circuit that maps the data into a high-dim Hilbert space, which we 
use as a kernel for an SVM. The data determines the rotations in 
the circuit. Below is an example of such a circuit with four qubits.

The plots show the KL divergence between the state distribution 
obtained on the hardware and that obtained on a noisy simulation 
for an 8-qubit circuit. The noise model is fairly accurate.
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XACC and Hybrid Variational 
Algorithms

● Algorithm Interface
○ General protocol / data structure 

for describing hybrid workflows
○ Initialize with problem-specific 

data
○ Execute, persist results to buffer

● Hardware Agnostic
○ easily swap between gate 

model QCs from IBM and 
Rigetti

● Efficient observable definition

The Google Sycamore 
chip being used in the 
gate model experiments. 
Figure from Nature 574, 
505 (2019).

• Confinement of colored partons into colorless particles 
may be described with the Lund string model.

• For a given set of quarks and antiquarks, find the 
arrangement of gluons that minimizes the λ measure 

HEP color reconnections in LHC

Problem representation using graph theory
• (1) Particles are embedded into graph G(V;E)  

– Nodes are particles and edges interactions: Quarks are origin nodes O, Gluons are intermediate 
nodes I, Antiquarks are destination nodes D.

– Constraints using Hamiltonian path:
– Every node is in only one position

– A quark must be in the first position

– An antiquark must be in the last position

– Antiquarks are followed by quarks 

– The distance between two nodes is mij in the λ measure
– Ising Model variation of the Traveling Salesman Problem

• (2) Connections between particles are nodes, edges form paths
– Quarks and antiquarks must have one connection
– Gluons must have two connections
– Goal is to form one optimal path utilizing all nodes
– Start with simplest formulation and incrementally add constraints to remove loops or “subtours”

Comparing solvers and accuracy
Fraction of times true ground state solution is found / 1000 samplings for toy events

• Physics test events generated can be generated on demand
• Classical solver and QUBO formulations complete, 

– Includes functions for mapping events into Hamiltonians

• Gate-based solution using QAOA working for very small events
• Can already run on some platforms 

– AMPL/CPLEX
– D-Wave using QBSolve with Kerberos, tabu and sampler solvers

Status

Reconstructed top quark transverse 
momentum. Shows a small bias, with fewer 

expected events at low value.

How number of charged tracks per event change 
when true minimum found. The mean and shape are 

shifted indicating retuning is necessary 

Reconstructed top mass differs from the input one as a 
function of the pT of the reconstructed top quark. 

Shows different calibration would be needed.


